1 次浏览

半导体

半导体 semiconductor,指常温下导电性能介于导体绝缘体之间的材料。
半导体在集成电路、消费电子、通信系统、光伏发电、照明、大功率电源转换等领域都有应用,如二极管就是采用半导体制作的器件。
无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关联。
常见的半导体材料有砷化镓等,硅是各种半导体材料应用中最具有影响力的一种。
物理定义

物质存在的形式多种多样,固体液体气体等离子体等等。我们通常把导电性差的材料,如煤、人工晶体琥珀陶瓷等称为绝缘体。而把导电性比较好的金属如金、银、铜、铁、锡、铝等称为导体。可以简单的把介于导体和绝缘体之间的材料称为半导体。与导体和绝缘体相比,半导体材料的发现是最晚的,直到20世纪30年代,当材料的提纯技术改进以后,半导体的存在才真正被学术界认可。 

半导体是指在常温下导电性能介于导体与绝缘体之间的材料。半导体是指一种导电性可控,范围从绝缘体到导体之间的材料。从科学技术和经济发展的角度 来看,半导体影响着人们的日常工作生活,直到20世纪30年代这一材料才被学界所认可。

半导体可以分为:集成电路、光电子器件、分立器件和传感器,半导体产品中大部分是集成电路。而芯片是半导体中重要的设备,通常制造在半导体晶圆表面。

半导体处于整个电子信息产业链的顶端,是各种电子终端产品得以运行的基础。被广泛地应用于PC端,手机及平板电脑,消费电子,工业和汽车等终端市场。

半导体特性的发现历史
1833年,英国科学家电子学之父法拉第最先发现硫化银电阻随着温度的变化情况不同于一般金属,一般情况下,金属的电阻随温度升高而增加,但法拉第发现硫化银材料的电阻是随着温度的上升而降低。这是半导体现象的首次发现。 
不久,1839年法国的贝克莱尔发现半导体和电解质接触形成的结,在光照下会产生一个电压,这就是后来人们熟知的光生伏特效应,这是被发现的半导体的第二个特性。
1873年,英国的史密斯发现硒晶体材料在光照下电导增加的光电导效应,这是半导体的第三种特性。
在1874年,德国的布劳恩观察到某些硫化物的电导与所加电场的方向有关,即它的导电有方向性,在它两端加一个正向电压,它是导通的;如果把电压极性反过来,它就不导电,这就是半导体的整流效应,也是半导体所特有的第四种特性。同年,舒斯特又发现了铜与氧化铜的整流效应。 
半导体的这四个特性,虽在1880年以前就先后被发现了,但半导体这个名词大概到1911年才被考尼白格和维斯首次使用。而总结出半导体的这四个特性一直到1947年12月才由贝尔实验室完成。 
2019年10月,一国际科研团队称与传统霍尔测量中仅获得3个参数相比,新技术在每个测试光强度下最多可获得7个参数:包括电子和空穴的迁移率;在光下的载荷子密度、重组寿命、电子、空穴和双极性类型的扩散长度。

分类及性能

(1)元素半导体。元素半导体是指单一元素构成的半导体,其中对硅、硒的研究比较早。它是由相同元素组成的具有半导体特性的固体材料,容易受到微量杂质和外界条件的影响而发生变化。目前, 只有硅、锗性能好,运用的比较广,硒在电子照明和光电领域中应用。硅在半导体工业中运用的多,这主要受到二氧化硅的影响,能够在器件制作上形成掩膜,能够提高半导体器件的稳定性,利于自动化工业生产。 

(2)无机合成物半导体。无机合成物主要是通过单一元素构成半导体材料,当然也有多种元素构成的半导体材料。这一半导体主要运用到高速器件中,InP制造的晶体管的速度比其他材料都高,主要运用到光电集成电路、抗核辐射器件中。 对于导电率高的材料,主要用于LED等方面。 
(3)有机合成物半导体。有机化合物是指含分子中含有碳键的化合物,把有机化合物和碳键垂直,叠加的方式能够形成导带,通过化学的添加,能够让其进入到能带,这样可以发生电导率,从而形成有机化合物半导体。这一半导体和以往的半导体相比,具有成本低、溶解性好、材料轻加工容易的特点。可以通过控制分子的方式来控制导电性能,应用的范围比较广,主要用于有机薄膜、有机照明等方面。 
(4)非晶态半导体。它又被叫做无定形半导体或玻璃半导体,属于半导电性的一类材料。非晶半导体和其他非晶材料一样,都是短程有序、长程无序结构。它主要是通过改变原子相对位置,改变原有的周期性排列,形成非晶硅。晶态和非晶态主要区别于原子排列是否具有长程序。非晶态半导体的性能控制难,随着技术的发明,非晶态半导体开始使用。这一制作工序简单,主要用于工程类,在光吸收方面有很好的效果,主要运用到太阳能电池液晶显示屏中。
(5)本征半导体。无晶格缺陷的纯净半导体的电阻率较大,实际应用不多。

应用领域

半导体在集成电路、消费电子、通信系统、光伏发电、照明应用、大功率电源转换等领域应用。

光伏应用

半导体材料光生伏特效应是太阳能电池运行的基本原理。现阶段半导体材料的光伏应用已经成为一大热门 ,是目前世界上增长最快、发展最好的清洁能源市场。太阳能电池的主要制作材料是半导体材料,判断太阳能电池的优劣主要的标准是光电转化率 ,光电转化率越高 ,说明太阳能电池的工作效率越高。根据应用的半导体材料的不同 ,太阳能电池分为晶体硅太阳能电池、薄膜电池以及III-V族化合物电池。
照明应用
LED是建立在半导体晶体管上的半导体发光二极管 ,采用LED技术半导体光源体积小,可以实现平面封装,工作时发热量低、节能高效,产品寿命长、反应速度快,而且绿色环保无污染,还能开发成轻薄短小的产品 ,一经问世 ,就迅速普及,成为新一代的优质照明光源,目前已经广泛的运用在我们的生活中。如交通指示灯、电子产品的背光源、城市夜景美化光源、室内照明等各个领域 ,都有应用。
大功率电源转换
交流电和直流电的相互转换对于电器的使用十分重要 ,是对电器的必要保护。这就要用到等电源转换装置。碳化硅击穿电压强度高 ,禁带宽度宽,热导性高,因此SiC半导体器件十分适合应用在功率密度和开关频率高的场合,电源装换装置就是其中之一。碳化硅元件在高温、高压、高频的又一表现使得现在被广泛使用到深井钻探,发电装置中的逆变器,电气混动汽车的能量转化器,轻轨列车牵引动力转换等领域。由于SiC本身的优势以及现阶段行业对于轻量化、高转换效率的半导体材料需要,SiC将会取代Si,成为应用最广泛的半导体材料。 
半导体制冷技术

半导体制冷技术是目前的制冷技术中应用比较广泛的。农作物在温室大棚中生长中,半导体制冷技术可以对环境温度有效控制,特别是一些对环境具有很高要求的植物,采用半导体制冷技术塑造生长环境,可以促进植物的生长。半导体制冷技术具有可逆性,可以用于制冷,也可以用于制热,对环境温度的调节具有良好的效果。

运行原理

半导体制冷技术的应用原理是建立在帕尔帖原理的基础上的。1834年,法国科学家帕尔帖发现了半导体制冷作用。帕尔贴原理又被称为是”帕尔贴效益“,就是将两种不同的导体充分运用起来,使用A和B组成的电路,通入直流电,在电路的接头处可以产生焦耳热,同时还会释放出一些其它的热量,此时就会发现,另一个接头处不是在释放热量,而是在吸收热量。这种现象是可逆的,只要对电流的方向进行改变,放热和吸热的运行就可以进行调节,电流的强度与吸收的热量和放出的热量之间存在正比例关系,与半导体自身所具备的性质也存在关系。由于金属材料的帕尔帖效应是相对较弱的,而半导体材料基于帕尔帖原理运行,所产生的效应也会更强一些,所以,在制冷的材料中,半导体就成为了主要的原料。但是,对于这种材料的使用中,需要注意多数的半导体材料的无量纲值接近1,比固体理论模型要低一些,在实际数据的计算上所获得的结果是4,所以,对于半导体材料的应用中,要使得半导体制冷技术合理运用,就要深入研究。
半导体制冷技术已经广泛应用在医药领域中,工业领域中,即便是日常生活中也得以应用,所以,该技术是有非常重要的发展前景的。
例如,将导体制冷技术用于现代的各种制冷设备中,诸如冰箱、空调等等,都可以配置电子冷却器。半导体冰箱就是使用了半导体制冷技术。在具体的应用中,可以根据不同客户的需要使用,以更好地满足客户的要求。
不同数量的半导体制冷芯片,在连接的过程中可以根据需要采用并联的方式或串联的方式,放置在合适的位置就可以发挥作用。二十世纪50年代,前苏联开发了一种小型模型冰箱,只有10升的容量,冰箱的体积非常小,使用便利。日本研制出一种冰箱,是专门用于储存红酒的。对于温度要严格控制,应用半导体制冷技术就可以满足冰箱的制冷要求。随着社会的不断发展,人们在追求生活质量的同时,对于制冷设备的要求也越来越高。当人们使用半导体冰箱的时候,就会发现这种冰箱比传统冰箱的耗电量更低一些,甚至可以达到20%,节能效果良好。 [8]
使用半导体空调,与日常生活中使用的空调不同,而是应用于特殊场所中,诸如机舱、潜艇等等。采用相对稳定的制冷技术,不仅可以保证快速制冷,而且可能够满足半导体制冷技术的各项要求。一些美国公司发现半导体制冷技术还有一个重要的功能,就是在有源电池中合理应用,就可以确保电源持续供应,可以超过8小时。在汽车制冷设备中,半导体制冷技术也得到应用。包括农业、天文学以及医学领域,半导体制冷技术也发挥着重要的作用。

半导体制冷技术难点以及所存在的问题

(一)半导体制冷技术的难点
半导体制冷的过程中会涉及到很多的参数,而且条件是复杂多变的。任何一个参数对冷却效果都会产生影响。实验室研究中,由于难以满足规定的噪声,就需要对实验室环境进行研究,但是一些影响因素的探讨是存在难度的。半导体制冷技术是基于粒子效应的制冷技术,具有可逆性。所以,在制冷技术的应用过程中,冷热端就会产生很大的温差,对制冷效果必然会产生影响。 [8]
(二)半导体制冷技术所存在的问题
其一,半导体材料的优质系数不能够根据需要得到进一 步的提升,这就必然会对半导体制冷技术的应用造成影响。 其二,对冷端散热系统和热端散热系统进行优化设计,但是在技术上没有升级,依然处于理论阶段,没有在应用中更好地发挥作用,这就导致半导体制冷技术不能够根据应用需要予以提升。 其三,半导体制冷技术对于其他领域以及相关领域的应用存在局限性,所以,半导体制冷技术使用很少,对于半导体制冷技术的研究没有从应用的角度出发,就难以在技术上扩展。 其四,市场经济环境中,科学技术的发展,半导体制冷技术要获得发展,需要考虑多方面的问题。重视半导体制冷技术的应用,还要考虑各种影响因素,使得该技术更好地发挥作用。

半导体芯片的应用

1、新能源领域

在可再生能源领域,在将风电和太阳能电力接入电网以及减少输电损耗方面,都发挥了极其重要的作用;绿色能源、电动汽车、绿色电子照明等新兴领域正在成为功率器件市场应用的新热点,需求强劲。

2、信息通讯设备领域

增强型氮化镓电晶体表现出高耐辐射性能,从而适用于通讯和科学卫星的功率和通讯系统;点到点通信、卫星通信、各种雷达和新型工业/医疗应用都将从这些大功率氮化镓器件的应用中获益。

 

3、4C产业

国内各主要IT产品仍将保持旺盛的市场需求,笔记本电脑、显示器、打印机、电视机、组合音响、激光视盘机等传统产品以及新兴汽车电子均将在未来保持平稳增长。随着全球空调、节能电机等电子产品产能向中国大陆转移,功率半导体的需求也将成倍地增加。

4、智能电网领域

功率半导体在提高整个电力供应链–从发电、输配电到最后的用电–的能效方面发挥着至关重要的作用。

5、传感器(MEMS)

MEMS(微机电系统)是在半导体芯片制造技术基础上发展起来的新兴领域,是微电路和微机械按功能要求在半导体芯片上的集成,基于光刻、腐蚀等半导体技术。MEMS器件主要包括传感器、执行器、微能源等,传感器较为成熟,执行器和微能源多处于起步阶段。MEMS当前主要应用在消费电子、汽车等领域。随着产品的不断成熟,航空航天、医学和工业领域的应用也逐渐普及。

6、可穿戴设备

智能可穿戴终端是指可直接穿在身上或整合到衣服、配件中,且可以通过软件支持和云端进行数据交互的设备。当前可穿戴终端多以手机辅助设备出现,其中以智能手环、智能手表和智能眼镜最为常见。

7、人工智能(AI)

人工智能(ArtificialIntelligence,AI)是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能同样离不开半导体芯片。

8、VR/AR(虚拟现实/增强现实)

虚拟现实技术通过调动用户的视觉、听觉、触觉和嗅觉等感官,让用户沉浸于计算机生成的虚拟环境中,创造一种全新的人机交互形式。虚拟现实(VirtualReality,VR)是一种运用计算机仿真系统生成多源信息融合的交互式三维动态实景及动作仿真使用户产生身临其境体验的技术。

未来发展

GaN(氮化镓)、碳化硅为代表的第三代半导体材料及器件的开发是新兴半导体产业的核心和基础,其研究开发呈现出日新月异的发展势态。GaN基光电器件中,蓝色发光二极管LED率先实现商品化生产成功开发蓝光LED和LD之后,科研方向转移到GaN紫外光探测器上,GaN材料在微波功率方面也有相当大的应用市场。氮化镓半导体开关被誉为半导体芯片设计上一个新的里程碑。美国佛罗里达大学的科学家已经开发出一种可用于制造新型电子开关的重要器件,这种电子开关可以提供平稳、无间断电源。 

新型半导体材料在工业方面的应用越来越多。新型半导体材料表现为其结构稳定,拥有卓越的电学特性,而且成本低廉,可被用于制造现代电子设备中广泛使用,我国与其他国家相比在这方面还有着很大一部分的差距,通常会表现在对一些基本仪器的制作和加工上,近几年来,国家很多的部门已经针对我国相对于其他国家存在的弱势,这一方面统一的组织了各个方面的群体,对其进行有效的领导,然后共同努力去研制更加高水平的半导体材料。这样才能够在很大程度上适应我国工业化的进步和发展,为我国社会进步提供更强大的动力。首先需要进一步对超晶格量子材料进行研发,目前我国半导体材料在这方面的发展背景来看,应该在很大程度上去提高超高亮度,红绿蓝光材料以及光通信材料,在未来的发展的主要研究方向上,同时要根据市场上,更新一代的电子器件以及电路等要求进行强化,将这些光电子结构的材料,在未来生产过程中的需求进行仔细的分析和探讨,然后去满足未来世界半导体发展的方向,我们需要选择更加优化的布点,然后做好相关的开发和研究工作,这样将各种研发机构与企业之间建立更好的沟通机制就可以在很大程度上实现高温半导体材料,更深一步的开发和利用。

半导体行业及应用介绍

一、简介

半导体是信息技术产业的核心以及支撑经济社会发展和保障国家安全的战略性、基础性和先导性产业,其技术水平和发展规模已成为衡量一个国家产业竞争力和综合国力的重要标志之一。

半导体产品主要应用于计算机、家用电器、数码电子、电气、通信、交通、医疗、航空航天等诸多领域。近年来,半导体应用领域随着科技进步不断延展,5G、物联网、人工智能、智能驾驶、云计算和大数据、机器人和无人机等新兴领域蓬勃发展,为半导体产业带来新的机遇。

半导体产业起步于上世纪 50 年代,在 80 年代前后逐步形成市场规模。1947年贝尔实验室采用锗材料研制出了第一只点接触三极管,奠定了微电子工业的基础,以晶体管的发明为标志,表明半导体产业正式诞生。60 年代中期,美国仙童半导体公司将硅表面的氧化层做成绝缘薄膜,发展出扩散、掩膜、照相和光刻于一体的平面处理技术,自此实现了半导体的规模化生产。20 世纪 70 年代,“摩尔定律”得到行业认可和推崇,半导体相关产品性能也得到了快速发展。

二、发展历程

随着技术迅速提升,资本的快速投入,半导体行业发展较快,逐渐形成了完善的产业链。但由于半导体行业具有生产技术工序多、技术更新换代快、投资风险大等特点,叠加下游消费市场的不断兴起,半导体产业链从集成化到垂直化分工越来越明确,历史上经历过三次空间上的产业转移。

第一阶段(1950s-1970s)半导体行业起源于美国。1950 年美国仙童半导体公司首次将集成电路技术商用,表明半导体行业正式在市场应用,伴随着诞生出 IBM、TI、Intel、AMD 等公司。全球半导体产业的最初形态为垂直整合的运营模式,即企业内设有半导体产业所有的制造部门,各个部门仅用于满足企业自身产品生产的需求。

第二阶段(1970s-1980s)日本半导体产值超过美国,占全球比重超过 50%,半导体产业实现第一次转移。半导体产业转变为 IDM 模式或系统厂商模式,即负责从设计、制造到封装测试所有的流程或满足其他系统厂商的需求。

第三阶段(1980s-2000s),半导体产业进行第二次转移,韩国、中国台湾占领细分产业。随着 PC 兴起,半导体产业从美国转向日本后又开始转向了韩国,孕育出三星电子等厂商。同时,台湾积体电路公司成立后,开启了晶圆代工(Foundry)模式,解决了要想设计芯片必须巨额投资晶圆制造产线的问题,拉开了垂直代工的序幕。

第四阶段(2010s 至今),半导体产业进行第三次转移,我国开始重视半导体产业发展,陆续出台了诸多相关支持政策,由需求带动销售,增速逐渐超过全球。另外,传统 IDM 厂商英特尔、三星电子等纷纷加入晶圆代工行列,设计(Fabless)、制造(Foundry)、封测(OSAT)三大行业发展成熟。

三、产品分类

按照产品分类,半导体可以分为分立器件和集成电路两大类:

1 分立器件行业

半导体器件是导电性介于良导电体与绝缘体之间,利用半导体材料特殊电特性来完成特定功能的电子器件,可用来产生、控制、接收、变换、放大信 号和进行能量转换。
半导体器件的半导体材料是硅、锗或砷化镓,可用作整流器、振荡器、发光器、放大器、测光器等器材。为了与集成电路相区别,有时也称为分立器件。绝大部分二端器件即晶体二极管,其基本结构是一个PN结。

分立器件是指具有单独功能的电子元件,主要功能为实现各类电子设备的整流、稳压、开关、混频、放大等,具有广泛的应用范围和不可替代性。

分立器件行业是半导体产业的基础及核心领域之一,具有应用领域广阔、高成品率、特殊器件不可替代等特性,具体包括二极管、三极管、场效应管等

分立器件被广泛应用于家用电器、信息通信、电源、电声等诸多领域。从市场需求看,分立器件受益于物联网、可穿戴设备、智能家居、健康护理、安防电子、新能源汽车、智能电网、5G 通信射频等市场的发展,具有较大的发展前景;从分立器件原材料看,随着氮化镓和碳化硅等第三代半导体材料的应用,半导体分立器件市场逐步向高端应用市场推进。

2 集成电路(IC)行业

集成电路是指将一定数量的常用电子元件,如电阻、电容、晶体管等,以及这些元件之间的连线,通过半导体工艺集成在一起的具有特定功能的电路。

集成电路极大地缩小了电子线路的体积,在现实应用中发挥着非常重要的作用,是现代信息社会的基石。

从功能、结构角度主要分为数字集成电路、模拟集成电路与数/模混合集成电路三类,其中:数字集成电路主要与数字信号的产生、放大和处理有关,数字信号即在时间和幅度上离散变化的信号;模拟集成电路主要与模拟信号的产生、放大和处理有关,模拟信号即幅度随时间连续变化的信号,包括一切的感知,如图像、声音、触感、温度、湿度等;数/模混合集成电路是指输入模拟或数字信号,输出为数字或模拟信号的集成电路。

集成电路具有体积小、重量轻、寿命长、可靠性高、性能好、成本低等优点,便于大规模生产,在物联网、可穿戴设备、智能家居、健康护理、安防电子、新能源汽车、智能电网、5G 通信射频等领域应用较广

四、行业分类

按照垂直分工模式划分,半导体行业分为半导体设计、制造和封装测试三大子行业:

1 半导体设计行业

半导体设计是指在一块较小的单晶硅片上使用一定的布线方法完成电子电路设计的过程。集成电路设计是半导体设计领域重要组成部分,集中体现了半导体设计领域的先进水平


半导体制造工艺

《半导体制造工艺》2015年8月7日机械工业出版社出版

主要介绍了半导体器件基本结构 、半导体器件工艺的发展历史、半导体材料基本性质及半导体制造中使用的化学品,以典型的CMOS管的制造实例为基础的集成电路的制造过程及制造过程中对环境的要求及污染的控制。

内容简介

硅片是一种硅材料通过加工切成一片一片的。硅是一种硬度很高的物质,硅材料看起来像石头一样,他要经过清洗干净然后用炉子加热融化形成一个大块的硅锭,然后再用特定机器来进行细切成一片一片。
主要工艺过程:多晶硅——区熔或直拉——单晶硅棒——滚、切、磨、抛——硅片
硅晶圆silicon wafer) 是一切集成电路芯片的制作母材。既然说到晶体,显然是经过纯炼与
结晶的程序。晶体化的制程,大多是采用「柴可拉斯基」
(Czycrasky) 拉晶法(CZ法)。拉晶时,将特定晶向(orientation) 的晶种(seed),浸入过饱和的纯硅熔汤(Melt) 中,并同时旋转拉出,硅原子便依照晶种晶向,乖乖地一层层成长上去,而得出所谓的晶棒(ingot)晶棒
的阻值如果太低,代表其中导电杂质 (impurity dopant) 太多,还需经过FZ法 (floating-zone) 的再结晶 (re-crystallization),将杂质逐出,提高纯度与阻值。
辅拉出的晶棒,外缘像椰子树干般,外径不甚一致,需予以机械加工修边,然后以X光绕射法,定出主切面 (primary flat) 的所在,磨出该平面;再以内刃环锯,削下一片片的硅晶圆。最后经过粗磨 (lapping)、化学蚀平(chemical etching) 与抛光(polishing) 等程序,得出具表面粗糙度在0.3微米以下抛光面之晶圆。(至于晶圆厚度,与其外径有关。) 刚才题及的晶向,与硅晶体的原子结构有关。硅晶体结构是所谓「钻石结构」(diamond-structure),系由两组面心结构 (FCC),相距(1/4,1/4,1/4) 晶格常数 (lattice constant;即立方晶格边长) 叠合而成。我们依米勒指针法 (Miller index),可定义出诸如:{100}、{111}、{110} 等晶面。所以晶圆也因之有 {100}、{111}、{110}等之分野。有关常用硅晶圆之切边方向等信息,请参考图2-2。现今半导体业所使用之硅晶圆,大多以 {100} 硅晶圆为主。其可依导电杂质之种类,再分为p型 (周期表III族) 与n型 (周期表V族)。由于硅晶外貌完全相同,晶圆制造厂因此在制作过程中,加工了供辨识的记号:亦即以是否有次要切面 (secondary flat) 来分辨。该次切面与主切面垂直,p型晶圆有之,而n型则阙如。 {100}硅晶圆循平行或垂直主切面方向而断裂整齐的特性,所以很容易切成矩形碎块,这是早期晶圆切割时,可用刮晶机 (scriber) 的原因 (它并无真正切断芯片,而只在表面刮出裂痕,再加以外力而整齐断开之。)事实上,硅晶的自然断裂面是{111},所以虽然得到矩形的碎芯片,但断裂面却不与{100}晶面垂直!

集成电路设计是指在硅片上集成许多晶体管及电阻、电容等元器件,并按照多层布线或遂道布线的方法,将元器件组合电路的过程。在集成电路设计过程中,

首先需要规格制定、完成硬件语言描述;其次在仿真的基础上完成逻辑合成和电路模拟;最后在完成电路布局布线以及电路监测的基础上,送至代工厂完成生产。

2 半导体制造行业

半导体制造是指依据半导体设计图进行晶圆制造及芯片生产的过程。当前半导体制造模式主要为代工方式,即专业的代工厂商根据半导体设计公司的要求实现晶圆制造及芯片生产。

晶圆制造的过程主要包括晶圆清洗、薄膜沉积、涂光刻胶、光刻、刻蚀、去胶、离子注入、薄膜沉积等多个环节

3 半导体封装测试行业

封装环节是半导体封装和测试过程的主要环节。其功能主要分为两方面,

首要功能是电学互联,通过金属Pin结赋予芯片电学互联特性,便于后续连接到PCB板上实现系统电路功能;另一功能是芯片保护,主要是对脆弱的裸片进行热扩散保护以及机械、电磁静电保护等。半导体封装测试流程如下:

从封装形式看,半导体封装主要经历以下几个阶段:
20 世纪 70 年代起,半导体行业发展迅速,行业竞争日益加剧和封装测试工艺日渐成熟,集成电路封装测试环节的技术逐渐转移到封装测试的工艺制程、生产管理、制造设备和原材料技术中。另外,半导体大型企业如 IDM 主要专注于半导体设计、制造领域,为降低经营风险,逐步将封装测试环节剥离,专业的封装测试公司开始出现,封测行业从产业中独立出来。20 世纪 90 年代至今,封测行业逐步实现地区转移。由于封装测试业需要较多的人力和土地资源,马来西亚、韩国、中国台湾、大陆地区等亚太地区受益于人力成本优势和当地政府的支持鼓励,迅速发展成为全球半导体封测基地。随着半导体集成化程度提升,封装技术也向集成化、小型化方面发展。进入 21 世纪以来,随着封装技术不断进步,倒装焊封装(FC)等先进封装技术开始出现,为半导体行业进一步发展提供了支撑。随着封装形式的不断发展,各类封装形式不断应用到计算机、消费类电子、 汽车电子、工业自动化系统等重点领域
随着技术的快速发展、政策的引导和鼓励、下游市场需求增大,我国封测行业取得了长足发展。我国作为全球第一大半导体封测市场,已形成了一批具有国际竞争力的半导体封测龙头企业
——————

半导体制造工艺是集成电路实现的手段,也是集成电路设计的基础。自从1948年晶体管发明以来,半导体器件工艺技术的发展经历了三个主要阶段:1950年采用合金法工艺,第一次生产出了实用化的合金结三极管;1955年扩散技术的采用是半导体器件制造技术的重大发展,为制造高频器件开辟了新途径;1960年平面工艺和外延技术的出现是半导体制造技术的重大变革,不但大幅度地提高了器件的频率、功率特性,改善了器件的稳定性和可靠性,而且也使半导体集成电路的工业化批量生产得以成为现实。目前平面工艺仍然是半导体器件和集成电路生产的主流工艺。

在半导体制造工艺发展的前35年,特征尺寸的缩小是半导体技术发展的一个标志,有效等比缩小(Scaling-down)的努力重点集中在通过提高器件速度以及在成品率可接受的芯片上集成更多的器件和功能来提高性能。然而,当半导体行业演进到45nm节点或更小尺寸的时候,器件的等比缩小将引发巨大的技术挑战。其中两大挑战是不断增长的静态功耗和器件特性的不一致性。这些问题来源于CMOS工艺快要到达原子理论和量子力学所决定的物理极限。

 

集成电路制造就是在硅片上执行一系列复杂的化学或者物理操作,简单讲,这些操作可以分为四大基本类:薄膜制作(1ayer)、刻印(pattern)、刻蚀和掺杂。这些在单个芯片上制作晶体管和加工互连线的技术综合起来就成为半导体制造工艺。

一、光刻工艺

光刻是通过一系列生产步骤将晶圆表面薄膜的特定部分除去的工艺。在此之后,晶圆表面会留下带有微图形结构的薄膜。被除去的部分可能形状是薄膜内的孔或是残留的岛状部分。光刻生产的目标是根据电路设计的要求,生成尺寸精确的特征图形,且在晶圆表面的位置要正确,而且与其他部件的关联也正确。通过光刻过程,最终在晶圆片上保留特征图形的部分。有时光刻工艺又被称为Photomasking, Masking,Photolithography或Microlithography,是半导体制造工艺中最关键的。在光刻过程中产生的错误可造成图形歪曲或套准不好,最终可转化为对器件的电特性产生影响。

二、掺杂工艺

掺杂是将特定量的杂质通过薄膜开口引入晶圆表层的工艺过程,它有两种实现方法:热扩散(thermal diffusion)和离子注入(implantation)。热扩散是在1000℃左右高温下发生的化学反应,晶圆暴露在一定掺杂元素气态下。扩散的简单例子就如同除臭剂从压力容器内释放到房间内。气态下的掺杂原子通过扩散化学反应迁移到暴露的晶圆表面,形成一层薄膜,在芯片应用中,热扩散也称为固态扩散,因为晶圆材料是固态的。热扩散是一个化学反应过程。而离子注入是一个物理反应过程。晶圆被放在离子注入机的一端,掺杂离子源(通常为气态)在另一端。在离子源一端,掺杂体原子被离子化(带有一定的电荷),被电场加到超高速,穿过晶圆表层。原子的动量将掺杂原子注入晶圆表层,就好像一粒子弹从枪内射入墙中。掺杂工艺的目的是在晶圆表层内建立兜形区,或是富含电子(N型)或是富含空穴(P型)。这些兜形区形成电性活跃区的PN结,在电路中的晶体管、二极管、电容器、电阻器都依靠它来工作。

三、膜层生长工艺

在晶圆表面生成了许多的薄膜,这些薄膜可以是绝缘体、半导体或导体。它们由不同的材料组成,是使用多种工艺生长或淀积的。这些主要的工艺技术是生长二氧化硅膜和淀积不同材料的薄膜。通用的淀积技术是化学气相淀积(CVD)、蒸发和溅射。

四、热处理工艺

热处理是简单地将晶圆加热和冷却来达到特定结果的工艺。在热处理的过程中,晶圆上没有增加或减去任何物质,另外会有一些污染物和水汽从晶圆上蒸发。在离子注入工艺后会有一步重要的热处理。掺杂原子的注入所造成的晶圆损伤会被热处理修复,这称为退火,温度一般在1000℃左右。另外,金属导线在晶圆上制成后会有一步热处理。这些导线在电路的各个器件之间承载电流。为了确保良好的导电性,金属会在450℃热处理后与晶圆表面紧密熔合。热处理的第三种用途是通过加热在晶圆表面的光刻胶将溶剂蒸发掉,从而得到精确的图形。

目前,随着微电子技术和集成电路产业的发展,集成在一块芯片上的器件数仍在持续增长。电路集成度提高的重要挑战就是半导体制造能力,即在可接受的成本下改善加工技术,以生产高集成度的甚大规模集成电路芯片。在硅片制造厂,硅片的生产需要2~3个月的工艺流程,完成400多道工艺步骤。在集成电路制造的4个阶段一原料制作、单晶生长和晶圆的制造、集成电路晶圆的生产以及集成电路的封装中,需要经过上面介绍的包括清洗、成膜、光刻、刻蚀、掺杂和热处理等步骤加工等一整套工艺。所以说芯片的制造也是最为复杂的流程与技术之一。

半导体和芯片的关系

半导体和芯片的关系?半导体应用领域有哪些?半导体芯片通常也可称为集成电路,是指在半导体片材上进行浸蚀、布线、制成的能实现某种功能的半导体器件。不只是硅芯片,常见的还包括砷化镓、氮化镓、碳化硅等半导体材料。半导体制造的过程就是“点石成金“的过程,主要是对硅晶圆的一系列处理,简单来说就是通过外延生长、光刻、刻蚀、掺杂和抛光,在硅片上形成所需要的电路,将硅片变成芯片。

什么是芯片

芯片,又称微电路(microcircuit)、微芯片(microchip)、集成电路(英语:integrated circuit, IC)。是指内含集成电路的硅片,体积很小,常常是计算机或其他电子设备的一部分。

芯片(chip)就是半导体元件产品的统称。是集成电路(IC, integrated circuit)的载体,由晶圆分割而成。

硅片是一块很小的硅,内含集成电路,它是计算机或者其他电子设备的一部分。

半导体是什么

指常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料。半导体在收音机、电视机以及测温上有着广泛的应用。如二极管就是采用半导体制作的器件。半导体是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。

物质存在的形式多种多样,固体、液体、气体、等离子体等。通常把导电性差的材料,如煤、人工晶体、琥珀、陶瓷等称为绝缘体。而把导电性比较好的金属如金、银、铜、铁、锡、铝等称为导体。可以简单的把介于导体和绝缘体之间的材料称为半导体。与导体和绝缘体相比,半导体材料的发现是最晚的,直到20世纪30年代,当材料的提纯技术改进以后,半导体的存在才真正被学术界认可。

半导体五大特性∶

掺杂性,热敏性,光敏性,负电阻率温度特性,整流特性。

半导体的分类

按照其制造技术可以分为:集成电路器件,分立器件、光电半导体、逻辑IC、模拟IC、储存器等大类,一般来说这些还会被分成小类。此外还有以应用领域、设计方法等进行分类,虽然不常用,但还是按照IC、LSI、VLSI(超大LSI)及其规模进行分类的方法。此外,还有按照其所处理的信号,可以分成模拟、数字、模拟数字混成及功能进行分类的方法。

半导体应用领域有哪些?

最早的实用“半导体”是「电晶体(Transistor)/ 二极体(Diode)」。

一、在无线电收音机(Radio)及电视机(Television)中,作为“讯号放大器/整流器”用。

二、近来发展「太阳能(Solar Power)」,也用在「光电池(Solar Cell)」中。

三、半导体可以用来测量温度,测温范围可以达到生产、生活、医疗卫生、科研教学等应用的70%的领域,有较高的准确度和稳定性,分辨率可达0.1℃,甚至达到0.01℃也不是不可能,线性度0.2%,测温范围-100~+300℃,是性价比极高的一种测温元件。


什么是芯片

芯片,又称微电路(microcircuit)、微芯片(microchip)、集成电路(英语:integrated circuit, IC)。是指内含集成电路的硅片,体积很小,常常是计算机或其他电子设备的一部分。

芯片(chip)就是半导体元件产品的统称。是集成电路(IC, integrated circuit)的载体,由晶圆分割而成。

硅片是一块很小的硅,内含集成电路,它是计算机或者其他电子设备的一部分。

什么是半导体

半导体( semiconductor),指常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料。

半导体在收音机、电视机以及测温上有着广泛的应用。如二极管就是采用半导体制作的器件。半导体是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。

 

 

什么是集成电路

集成电路(integrated circuit)是一种微型电子器件或部件。采用一定的工艺,把一个电路中所需的晶体管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;

其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗、智能化和高可靠性方面迈进了一大步。

它在电路中用字母“IC”表示。集成电路发明者为杰克·基尔比(基于锗(Ge)的集成电路)和罗伯特·诺伊思(基于硅(Si)的集成电路)。当今半导体工业大多数应用的是基于硅的集成电路。

是20世纪50年代后期一60年代发展起来的一种新型半导体器件。它是经过氧化、光刻、扩散、外延、蒸铝等半导体制造工艺,把构成具有一定功能的电路所需的半导体、电阻、电容等元件及它们之间的连接导线全部集成在一小块硅片上,然后焊接封装在一个管壳内的电子器件。

其封装外壳有圆壳式、扁平式或双列直插式等多种形式。集成电路技术包括芯片制造技术与设计技术,主要体现在加工设备,加工工艺,封装测试,批量生产及设计创新的能力上。

芯片和集成电路有什么区别

要表达的侧重点不同。

芯片就是芯片,一般是指你肉眼能够看到的长满了很多小脚的或者脚看不到,但是很明显的方形的那块东西。但是,芯片也包括各种各样的芯片,比如基带的、电压转换的等等。

处理器更强调功能,指的就是那块执行处理的单元,可以说是MCU、CPU等。

集成电路范围要广多了,把一些电阻电容二极管集成到一起就算是集成电路了,可能是一块模拟信号转换的芯片,也可能是一块逻辑控制的芯片,但是总得来说,这个概念更加偏向于底层的东西。

集成电路是指组成电路的有源器件、无源元件及其互连一起制作在半导体衬底上或绝缘基片上,形成结构上紧密联系的、内部相关的事例电子电路。它可分为半导体集成电路、膜集成电路、混合集成电路三个主要分支。

芯片(chip)就是半导体元件产品的统称。是集成电路(IC, integrated circuit)的载体,由晶圆分割而成。

半导体集成电路和半导体芯片有什么关系和不同

芯片是集成电路一种简称,其实芯片一词的真正含义是指集成电路封装内部的一点点大的半导体芯片,也就是管芯。

严格讲芯片和集成电路不能互换。 集成电路就是通过半导体技术,薄膜技术和厚膜技术制造的,凡是把一定功能的电路小型化后做在一定封装的电路形式下的,都可以叫做集成电路。半导体是一种介于良好导体和非良好导体(或说绝缘体)之间的物质。

半导体集成电路包括半导体芯片及外围相关电路。

【半导体集成电路】

半导体集成电路是将晶体管,二极管等等有源元件和电阻器,电容器等无源元件,按照一定的电路互联,“集成”在一块半导体单晶片上,从而完成特定的电路或者系统功能。

【半导体芯片】

在半导体片材上进行浸蚀,布线,制成的能实现某种功能的半导体器件。不只是硅芯片,常见的还包括砷化镓(砷化镓有毒,所以一些劣质电路板不要好奇分解它),锗等半导体材料。半导体也像汽车有潮流。

二十世纪七十年代,因特尔等美国企业在动态随机存取内存(D-RAM)市场占上风。但由于大型计算机的出现,需要高性能D-RAM的二十世纪八十年代,日本企业名列前茅


晶圆

语音 编辑 讨论2 上传视频

晶圆是指制作硅半导体电路所用的硅晶片,其原始材料是。高纯度的多晶硅溶解后掺入硅晶体晶种,然后慢慢拉出,形成圆柱形的单晶硅。硅晶棒在经过研磨,抛光,切片后,形成硅晶圆片,也就是晶圆。国内晶圆生产线以 8英寸和 12 英寸为主。 [1]
晶圆的主要加工方式为片加工和批加工,即同时加工1 片或多片晶圆。随着半导体特征尺寸越来越小,加工及测量设备越来越先进,使得晶圆加工出现了新的数据特点。同时,特征尺寸的减小,使得晶圆加工时,空气中的颗粒数对晶圆加工后质量及可靠性的影响增大,而随着洁净的提高,颗粒数也出现了新的数据特点。 [2]
硅晶圆和硅太阳能电池分别是半导体材料和半导体器件的典型代表。
————-

芯片,半导体和集成电路的区别

 我来答 

分享

举报

百度网友688fb74c 

高粉答主

2019-10-09 · 醉心答题,欢迎关注

1、分类不同

芯片在电子学中是一种把电路小型化的方式,并时常制造在半导体晶圆表面上。

半导体指常温下导电性能介于导体与绝缘体之间的材料。半导体在消费电子、通信系统、医疗仪器等领域有广泛应用。

集成电路是一种微型电子器件或部件。采用一定的工艺,把一个电路中所需的晶体管、电阻、电容和电感等元件及布线互连一起。

2、特点不同

芯片将电路制造在半导体芯片表面上的集成电路又称薄膜集成电路。另有一种厚膜集成电路是由独立半导体设备和被动组件,集成到衬底或线路板所构成的小型化电路。

物质存在的形式多种多样,固体、液体、气体、等离子体等等。通常把导电性差的材料,如煤、人工晶体、琥珀、陶瓷等称为绝缘体。

集成电路技术包括芯片制造技术与设计技术,主要体现在加工设备,加工工艺,封装测试,批量生产及设计创新的能力上。

3、功能不同

芯片晶体管发明并大量生产之后,各式固态半导体组件如二极管、晶体管等大量使用,取代了真空管在电路中的功能与角色。

半导体是指在常温下导电性能介于导体与绝缘体之间的材料。半导体主要运用在收音机、电视机和测温上。半导体是指一种导电性可控,范围从绝缘体到导体之间的材料。从

集成电路具有体积小,重量轻,引出线和焊接点少,寿命长,可靠性高,性能好等优点,同时成本低,便于大规模生产。


半导体具有特性有:可掺杂性、热敏性、光敏性、负电阻率温度、可整流性。

半导体材料除了用于制造大规模集成电路之外,还可以用于功率器件、光电器件、压力传感器、热电制冷等用途;利用微电子的超微细加工技术,还可以制成MEMS(微机械电子系统),应用在电子、医疗领域。

半导体是指导电性能介于导体和绝缘体之间的材料。通过掺入杂质来改变其导电性能,人为控制它导电或者不导电以及导电的容易程度。

扩展资料

半导体的四种分类方法

1、按化学成分:分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括第Ⅲ和第Ⅴ族化合物、第Ⅱ和第Ⅵ族化合物、氧化物,以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。

2、按制造技术:分为集成电路器件,分立器件、光电半导体、逻辑IC、模拟IC、储存器等大类,一般来说这些还会被分成小类。

3、按应用领域、设计方法分类:按照IC、LSI、VLSI(超大LSI)及其规模进行分类的方法。

4、按所处理的信号:可以分成模拟、数字、模拟数字混成及功能进行分类的方法。


硅是半导体的原因:硅原子的核外电子第一层有2个电子,第二层有8个电子,达到稳定态。最外层有4个电子即为价电子,它对硅原子的导电性等方面起着主导作用。硅晶体中没有明显的自由电子,能导电,但导电率不及金属,且随温度升高而增加,所以具半导体性质。

扩展资料:

硅在地壳中的含量是除氧外最多的元素。如果说碳是组成一切有机生命的基础,那么硅对于地壳来说,占有同样的位置,因为地壳的主要部分都是由含硅的岩石层构成的。这些岩石几乎全部是由硅石和各种硅酸盐组成。长石、云母、黏土、橄榄石、角闪石等等都是硅酸盐类;水晶、玛瑙、碧石、蛋白石、石英、砂子以及燧石等等都是硅石。


电脑cpu的核心材料用硅:

  • 目前能制成半导体(电子原件中最重要的原件)的只有两种物质,一是硅,二是锗,全是金属!
  • 而锗在一些方面不如硅好,所以就用硅了,通过氧化,掺入别的元素,还有光刻,就做成电子芯片了,而别的金属都做不到这一点。
  • 至于CPU是如何进行让计算的,这个不是一句两句能说明白的,原理上有些书上可能有,根本上是如何计算的,这个是核心技术,只有CPU厂的技术人员知道!

简单说一下,在计算机里是用二进制来计算的,就是0和1,0是低电位,1是高电位。


股票芯片和半导体有什么区别?

2021-08-301:04

芯片和半导体相辅相成,很多投资者经常把二者混合在一起,其实芯片和半导体还是有一定区别的,主要表现在:

半导体是一类材料的总称,半导体可以分为:集成电路、光电子器件、分立器件和传感器,半导体产品中大部分是集成电路。而芯片是半导体中重要的设备,通常制造在半导体晶圆表面。

半导体处于整个电子信息产业链的顶端,是各种电子终端产品得以运行的基础。被广泛地应用于PC端,手机及平板电脑,消费电子,工业和汽车等终端市场。如:通富微电、韦尔股份、北京君正、紫光国微、兆易创新等都是以半导体为主营业务的上市公司。

我们国家强调“科技强国”,半导体设备和材料处于产业链的上游;芯片更是不可缺少的一部分,所以无论是半导体股票还是芯片股票,都有较高的投资价值。

发布日期:

发表评论

您的电子邮箱地址不会被公开。 必填项已用*标注